Introduction to
widgets

Docs > Development > Ul > Introduction to widgets

Contents

e Hello world

e Basic widgets

e Using Material Components

e Handling gestures

e Changing widgets in response to input
e Bringing_it all together

e Responding to widget lifecycle events
* Keys

* Global Keys

Flutter widgets are built using a modern framework that takes inspiration from React. The central idea
is that you build your Ul out of widgets. Widgets describe what their view should look like given their
current configuration and state. When a widget's state changes, the widget rebuilds its description,
which the framework diffs against the previous description in order to determine the minimal changes
needed in the underlying render tree to transition from one state to the next.

O Note: If you would like to become better acquainted with Flutter by diving into some code,
check out the basic layout codelab, building layouts, and adding_interactivity to your Flutter app.

Hello world

https://flutter.dev/docs
https://flutter.dev/docs/development
https://flutter.dev/docs/development/ui
https://flutter.dev/docs/development/ui/widgets-intro.html
https://reactjs.org/
https://api.flutter.dev/flutter/widgets/runApp.html
https://github.com/flutter/website/tree/master/src/docs/development/ui/widgets-intro.md
https://github.com/flutter/website/issues/new?title=%27Introduction%20to%20widgets%27%20page%20issue&body=Page%20URL:%20https://flutter.dev/docs/development/ui/widgets-intro.html%0D%0APage%20source:%20https://github.com/flutter/website/tree/master/src/docs/development/ui/widgets-intro.md%0D%0A%0D%0AFound%20a%20typo?%20You%20can%20fix%20it%20yourself%20by%20going%20to%20the%20page%20source%20and%20clicking%20the%20pencil%20icon.%20Or%20finish%20creating%20this%20issue.%0D%0A%0D%0ADescription%20of%20issue:
https://flutter.dev/docs/codelabs/layout-basics
https://flutter.dev/docs/development/ui/layout
https://flutter.dev/docs/development/ui/interactive

import 'package:flutter/material.dart’; Ej

void main() {
runApp (
Center(
child: Text(
'Hello, world!'',
textDirection: TextDirection.ltr,

The runApp() function takes the given Widget and makes it the root of the widget tree. In this
example, the widget tree consists of two widgets, the Center widget and its child, the Text widget.
The framework forces the root widget to cover the screen, which means the text “Hello, world” ends up
centered on screen. The text direction needs to be specified in this instance; when the MaterialApp
widget is used, this is taken care of for you, as demonstrated later.

When writing an app, you'll commonly author new widgets that are subclasses of either
StatelessWidget or StatefulWidget, depending on whether your widget manages any state. A

widget’'s main job is to implement a build() function, which describes the widget in terms of other,
lower-level widgets. The framework builds those widgets in turn until the process bottoms out in
widgets that represent the underlying RenderObject, which computes and describes the geometry of
the widget.

Basic widgets

Flutter comes with a suite of powerful basic widgets, of which the following are commonly used:

Text
The Text widget lets you create a run of styled text within your application.

Row, Column
These flex widgets let you create flexible layouts in both the horizontal (Row) and vertical (Column)
directions. The design of these objects is based on the web’s flexbox layout model.

Stack
Instead of being linearly oriented (either horizontally or vertically), a Stack widget lets you place
widgets on top of each other in paint order. You can then use the Positioned widget on children of a

Stack to position them relative to the top, right, bottom, or left edge of the stack. Stacks are based on
the web's absolute positioning layout model.

Container

The Container widget lets you create a rectangular visual element. A container can be decorated with
a BoxDecoration, such as a background, a border, or a shadow. A Container can also have margins,

padding, and constraints applied to its size. In addition, a Container can be transformed in three
dimensional space using a matrix.

Below are some simple widgets that combine these and other widgets:

https://api.flutter.dev/flutter/widgets/Widget-class.html
https://api.flutter.dev/flutter/widgets/Center-class.html
https://api.flutter.dev/flutter/widgets/Text-class.html
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html
https://api.flutter.dev/flutter/widgets/StatelessWidget/build.html
https://api.flutter.dev/flutter/rendering/RenderObject-class.html
https://api.flutter.dev/flutter/widgets/Text-class.html
https://api.flutter.dev/flutter/widgets/Row-class.html
https://api.flutter.dev/flutter/widgets/Column-class.html
https://api.flutter.dev/flutter/widgets/Stack-class.html
https://api.flutter.dev/flutter/widgets/Positioned-class.html
https://api.flutter.dev/flutter/widgets/Container-class.html
https://api.flutter.dev/flutter/painting/BoxDecoration-class.html

import 'package:flutter/material.dart’; ﬁj

class MyAppBar extends StatelessWidget ({
MyAppBar({this.title});

// Fields in a Widget subclass are always marked "final".
final Widget title;

@override
Widget build(BuildContext context) ({
return Container(
height: 56.0, // in logical pixels
padding: const EdgeInsets.symmetric(horizontal: 8.0),
decoration: BoxDecoration(color: Colors.blue[500]),
// Row is a horizontal, linear layout.
child: Row(
// <Widget> is the type of items in the 1list.
children: <Widget>|
IconButton(
icon: Icon(Icons.menu),
tooltip: 'Navigation menu',
onPressed: null, // null disables the button
),
// Expanded expands its child to fill the available space.
Expanded (
child: title,
),
IconButton(
icon: Icon(Icons.search),
tooltip: 'Search’,
onPressed: null,

class MyScaffold extends StatelessWidget {
@override
Widget build(BuildContext context) {
// Material is a conceptual piece of paper on which the UI appears.
return Material(
// Column is a vertical, linear layout.
child: Column(
children: <Widget>|
MyAppBar (
title: Text(
'Example title',
style: Theme.of (context) .primaryTextTheme.title,

),

),
Expanded (

child: Center(
child: Text('Hello, world!"),

void main() {
runApp (MaterialApp (
title: 'My app', // used by the 0S task switcher
home: MyScaffold(),
));
}

Be sure to have a uses-material-design: true entryinthe flutter section of your pubspec.yaml
file. It allows you to use the predefined set of Material icons.

name: my_app |
flutter:
uses-material-design: true

Many Material Design widgets need to be inside of a MaterialApp to display properly, in order to

inherit theme data. Therefore, run the application with a MaterialApp.

The MyAppBar widget creates a Container with a height of 56 device-independent pixels with an
internal padding of 8 pixels, both on the left and the right. Inside the container, MyAppBar uses a Row
layout to organize its children. The middle child, the title widget, is marked as Expanded, which
means it expands to fill any remaining available space that hasn't been consumed by the other
children. You can have multiple Expanded children and determine the ratio in which they consume the
available space using the flex argument to Expanded.

The MyScaffold widget organizes its children in a vertical column. At the top of the column it places
an instance of MyAppBar, passing the app bar a Text widget to use as its title. Passing widgets as
arguments to other widgets is a powerful technique that lets you create generic widgets that can be
reused in a wide variety of ways. Finally, MyScaffold uses an Expanded to fill the remaining space with
its body, which consists of a centered message.

For more information, see Layouts.

Using Material Components

Flutter provides a number of widgets that help you build apps that follow Material Design. A Material
app starts with the MaterialApp widget, which builds a number of useful widgets at the root of your
app, including a Navigator, which manages a stack of widgets identified by strings, also known as
“routes”. The Navigator lets you transition smoothly between screens of your application. Using the
MaterialApp widget is entirely optional but a good practice.

https://design.google.com/icons/
https://api.flutter.dev/flutter/material/MaterialApp-class.html
https://api.flutter.dev/flutter/widgets/Container-class.html
https://api.flutter.dev/flutter/widgets/Row-class.html
https://api.flutter.dev/flutter/widgets/Expanded-class.html
https://api.flutter.dev/flutter/widgets/Expanded-class.html#flex
https://api.flutter.dev/flutter/widgets/Text-class.html
https://api.flutter.dev/flutter/widgets/Expanded-class.html
https://flutter.dev/docs/development/ui/widgets/layout
https://api.flutter.dev/flutter/material/MaterialApp-class.html
https://api.flutter.dev/flutter/widgets/Navigator-class.html
https://api.flutter.dev/flutter/material/MaterialApp-class.html

import 'package:flutter/material.dart’; Ej

void main() {
runApp (MaterialApp(
title: 'Flutter Tutorial',
home: TutorialHome(),
));
}

class TutorialHome extends StatelessWidget {
@override
Widget build(BuildContext context) {
// Scaffold is a layout for the major Material Components.
return Scaffold(
appBar: AppBar(
leading: IconButton(
icon: Icon(Icons.menu),
tooltip: 'Navigation menu',
onPressed: null,
),
title: Text('Example title'),
actions: <Widget>|
IconButton(
icon: Icon(Icons.search),
tooltip: 'Search’,
onPressed: null,
),
1,
),

// body is the majority of the screen.
body: Center(
child: Text('Hello, world!"'),

),

floatingActionButton: FloatingActionButton(
tooltip: 'Add', // used by assistive technologies
child: Icon(Icons.add),
onPressed: null,

Now that the code has switched from MyAppBar and MyScaffold to the AppBar and Scaffold widgets,
and from material.dart, the app is starting to look at bit more Material. For example, the app bar has
a shadow and the title text inherits the correct styling automatically. A floating action button is also
added.

Notice that widgets are passed as arguments to other widgets. The Scaffold widget takes a number
of different widgets as named arguments, each of which are placed in the Scaffold layout in the
appropriate place. Similarly, the AppBar widget lets you pass in widgets for the 1eading widget, and
the actions of the title widget. This pattern recurs throughout the framework and is something you
might consider when designing your own widgets.

https://api.flutter.dev/flutter/material/AppBar-class.html
https://api.flutter.dev/flutter/material/Scaffold-class.html
https://api.flutter.dev/flutter/material/Scaffold-class.html
https://api.flutter.dev/flutter/material/AppBar-class.html
https://api.flutter.dev/flutter/material/AppBar-class.html#leading
https://api.flutter.dev/flutter/material/AppBar-class.html#actions
https://api.flutter.dev/flutter/material/AppBar-class.html#title

For more information, see Material Components widgets.

© Note: Material is one of the 2 bundled designs included with Flutter. To create an i0OS-centric
design, see the Cupertino components package, which has its own versions of CupertinoApp,
and CupertinoNavigationBar.

Handling gestures

Most applications include some form of user interaction with the system. The first step in building an
interactive application is to detect input gestures. See how that works by creating a simple button:

class MyButton extends StatelessWidget ({ |
@override
Widget build(BuildContext context) ({
return GestureDetector (
onTap: () {
print('MyButton was tapped!');
H
child: Container(
height: 36.0,
padding: const EdgelInsets.all(8.0),
margin: const EdgeInsets.symmetric(horizontal: 8.9),
decoration: BoxDecoration(
borderRadius: BorderRadius.circular(5.0),
color: Colors.lightGreen[500],
),
child: Center(
child: Text('Engage'),
),

The GestureDetector widget doesn't have a visual representation but instead detects gestures made
by the user. When the user taps the Container, the GestureDetector calls its onTap (). callback, in this
case printing a message to the console. You can use GestureDetector to detect a variety of input
gestures, including taps, drags, and scales.

Many widgets use a GestureDetector to provide optional callbacks for other widgets. For example,
the IconButton, RaisedButton, and FloatingActionButton widgets have onPressed(). callbacks that
are triggered when the user taps the widget.

For more information, see Gestures in Flutter.

https://flutter.dev/docs/development/ui/widgets/material
https://api.flutter.dev/flutter/widgets/GestureDetector-class.html
https://api.flutter.dev/flutter/widgets/Container-class.html
https://api.flutter.dev/flutter/widgets/GestureDetector-class.html#onTap
https://api.flutter.dev/flutter/widgets/GestureDetector-class.html
https://api.flutter.dev/flutter/material/IconButton-class.html
https://api.flutter.dev/flutter/material/RaisedButton-class.html
https://api.flutter.dev/flutter/material/FloatingActionButton-class.html
https://api.flutter.dev/flutter/material/RaisedButton-class.html#onPressed
https://flutter.dev/docs/development/ui/advanced/gestures
https://flutter.dev/docs/development/ui/widgets/cupertino
https://api.flutter.dev/flutter/cupertino/CupertinoApp-class.html
https://api.flutter.dev/flutter/cupertino/CupertinoNavigationBar-class.html

Changing widgets in response to input

So far, this page has used only stateless widgets. Stateless widgets receive arguments from their
parent widget, which they store in final member variables. When a widget is asked to build(), it uses
these stored values to derive new arguments for the widgets it creates.

In order to build more complex experiences—for example, to react in more interesting ways to user
input—applications typically carry some state. Flutter uses StatefulWidgets to capture this idea.
StatefulWidgets are special widgets that know how to generate State objects, which are then used
to hold state. Consider this basic example, using the RaisedButton mentioned earlier:

class Counter extends StatefulWidget { I_D
// This class is the configuration for the state. It holds the
// values (in this case nothing) provided by the parent and used by the build
// method of the State. Fields in a Widget subclass are always marked "final".

@override
_CounterState createState() => _CounterState();

}

class _CounterState extends State<Counter> {
int _counter = 0;

void _increment() {
setState(() {
// This call to setState tells the Flutter framework that
// something has changed in this State, which causes it to rerun
// the build method below so that the display can reflect the
// updated values. If you change _counter without calling
// setState(), then the build method won't be called again,
// and so nothing would appear to happen.
_counter++;
1)
}

@override
Widget build(BuildContext context) ({
// This method is rerun every time setState is called,
// for instance, as done by the _increment method above.
// The Flutter framework has been optimized to make rerunning
// build methods fast, so that you can just rebuild anything that
// needs updating rather than having to individually change
// instances of widgets.
return Row(
children: <Widget>|
RaisedButton(
onPressed: _increment,
child: Text('Increment'),
),
Text('Count: S_counter'),
1,
)
'

https://dart.dev/guides/language/language-tour#final-and-const
https://api.flutter.dev/flutter/widgets/StatelessWidget/build.html
https://api.flutter.dev/flutter/material/RaisedButton-class.html

You might wonder why StatefulWidget and State are separate objects. In Flutter, these two types of
objects have different life cycles. Widgets are temporary objects, used to construct a presentation of
the application in its current state. State objects, on the other hand, are persistent between calls to
build(), allowing them to remember information.

The example above accepts user input and directly uses the result in its build () method. In more
complex applications, different parts of the widget hierarchy might be responsible for different
concerns; for example, one widget might present a complex user interface with the goal of gathering
specific information, such as a date or location, while another widget might use that information to
change the overall presentation.

In Flutter, change notifications flow “up” the widget hierarchy by way of callbacks, while current state
flows “down” to the stateless widgets that do presentation. The common parent that redirects this
flow is the State. The following slightly more complex example shows how this works in practice:

class CounterDisplay extends StatelessWidget { Ej
CounterDisplay({this.count});

final int count;

@override
Widget build(BuildContext context) ({
return Text('Count: Scount');

}

class CounterIncrementor extends StatelessWidget ({
CounterIncrementor({this.onPressed});

final VoidCallback onPressed;

@override
Widget build(BuildContext context) ({
return RaisedButton(
onPressed: onPressed,
child: Text('Increment'),

),

class Counter extends StatefulWidget ({
@override
_CounterState createState() => _CounterState();

}

class _CounterState extends State<Counter> {
int _counter = 0;

void _increment() {
setState(() {
++_counter;

1),

@override
Widget build(BuildContext context) ({
return Row(children: <Widget>|
CounterIncrementor(onPressed: _increment),
CounterDisplay(count: _counter),

1);

Notice the creation of two new stateless widgets, cleanly separating the concerns of displaying the
counter (CounterDisplay) and changing the counter (CounterIncrementor). Although the net result is
the same as the previous example, the separation of responsibility allows greater complexity to be
encapsulated in the individual widgets, while maintaining simplicity in the parent.

For more information, see:

e StatefulWidget
e setState()

Bringing it all together

What follows is a more complete example that brings together these concepts: A hypothetical
shopping application displays various products offered for sale, and maintains a shopping cart for
intended purchases. Start by defining the presentation class, ShoppingListItem:

https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html
https://api.flutter.dev/flutter/widgets/State/setState.html

class Product { O
const Product({this.name});
final String name;

}

typedef void CartChangedCallback(Product product, bool inCart);

class ShoppinglListItem extends StatelessWidget {
ShoppingListItem({Product product, this.inCart, this.onCartChanged})
: product = product,
super(key: ObjectKey(product));

final Product product;
final bool inCart;
final CartChangedCallback onCartChanged;

Color _getColor(BuildContext context) {
// The theme depends on the BuildContext because different parts of the tree
// can have different themes. The BuildContext indicates where the build is
// taking place and therefore which theme to use.

return inCart ? Colors.black54 : Theme.of(context).primaryColor;

TextStyle _getTextStyle(BuildContext context) ({
if (!inCart) return null;

return TextStyle(
color: Colors.black54,
decoration: TextDecoration.lineThrough,
)
}

@override
Widget build(BuildContext context) ({
return ListTile(

onTap: () {
onCartChanged(product, inCart);

b

leading: CircleAvatar(
backgroundColor: _getColor(context),
child: Text(product.name[9]),

),

title: Text(product.name, style: _getTextStyle(context)),
);
}

The ShoppingListItem widget follows a common pattern for stateless widgets. It stores the values it
receives in its constructor in final member variables, which it then uses during its build (). function.
For example, the inCart boolean toggles between two visual appearances: one that uses the primary
color from the current theme, and another that uses gray.

https://dart.dev/guides/language/language-tour#final-and-const
https://api.flutter.dev/flutter/widgets/StatelessWidget/build.html

When the user taps the list item, the widget doesn't modify its inCart value directly. Instead, the
widget calls the onCartChanged function it received from its parent widget. This pattern lets you store
state higher in the widget hierarchy, which causes the state to persist for longer periods of time. In the

When the parent receives the onCartChanged callback, the parent updates its internal state, which
triggers the parent to rebuild and create a new instance of ShoppingListItem with the new inCart
value. Although the parent creates a new instance of ShoppingListItem when it rebuilds, that
operation is cheap because the framework compares the newly built widgets with the previously built
widgets and applies only the differences to the underlying Render0Object.

Here's an example parent widget that stores mutable state:

https://api.flutter.dev/flutter/widgets/runApp.html
https://api.flutter.dev/flutter/rendering/RenderObject-class.html

class ShoppinglList extends StatefulWidget ({ D
ShoppingList({Key key, this.products}) : super(key: key);

final List<Product> products;

// The framework calls createState the first time a widget appears at a given
// location in the tree. If the parent rebuilds and uses the same type of

// widget (with the same key), the framework re-uses the State object

// instead of creating a new State object.

@override
_ShoppingListState createState() => _ShoppingListState();

}

class _ShoppinglListState extends State<ShoppingList> {
Set<Product> _shoppingCart = Set<Product>();

void _handleCartChanged(Product product, bool inCart) {
setState(() {
// When a user changes what's in the cart, you need to change
// _shoppingCart inside a setState call to trigger a rebuild.
// The framework then calls build, below,
// which updates the visual appearance of the app.

if (!inCart)
_shoppingCart.add(product) ;
else
_shoppingCart.remove(product) ;
1)
}

@override
Widget build(BuildContext context) ({
return Scaffold(
appBar: AppBar(
title: Text('Shopping List'),
),
body: ListView(
padding: EdgeInsets.symmetric(vertical: 8.9),
children: widget.products.map((Product product) ({
return ShoppingListItem(
product: product,
inCart: _shoppingCart.contains(product),
onCartChanged: _handleCartChanged,
)
}) .toList(),

void main() {
runApp (MaterialApp(
title: 'Shopping App',

home: ShoppingList(
products: <Product>|
Product(name: 'Eggs'),
Product(name: 'Flour'),
Product(name: 'Chocolate chips'),

The ShoppingList class extends StatefulWidget, which means this widget stores mutable state.
When the ShoppingList widget is first inserted into the tree, the framework calls the createState().
function to create a fresh instance of _ShoppingListState to associate with that location in the tree.
(Notice that subclasses of State are typically named with leading underscores to indicate that they
are private implementation details.) When this widget’s parent rebuilds, the parent creates a new
instance of ShoppingList, but the framework reuses the _ShoppinglListState instance that is already
in the tree rather than calling createState again.

To access properties of the current ShoppingList, the _ShoppinglListState can use its widget
property. If the parent rebuilds and creates a new ShoppinglList, the _ShoppingListState rebuilds
with the new widget value. If you wish to be notifled when the widget property changes, override the
didUpdateWidget (). function, which is passed as oldWidget to let you compare the old widget with

the current widget.

When handling the onCartChanged callback, the _ShoppingListState mutates its internal state by
either adding or removing a product from _shoppingCart. To signal to the framework that it changed
its internal state, it wraps those calls in a setState(). call. Calling setState marks this widget as dirty
and schedules it to be rebuilt the next time your app needs to update the screen. If you forget to call
setState when modifying the internal state of a widget, the framework won't know your widget is dirty
and might not call the widget’s build() function, which means the user interface might not update to
reflect the changed state.

By managing state in this way, you don't need to write separate code for creating and updating child
widgets. Instead, you simply implement the build function, which handles both situations.

Responding to widget lifecycle events

After calling createState(). on the StatefulWidget, the framework inserts the new state object into
the tree and then calls initState() on the state object. A subclass of State can override initState
to do work that needs to happen just once. For example, override initState to configure animations
or to subscribe to platform services. Implementations of initState are required to start by calling

super.initState.

When a state object is no longer needed, the framework calls dispose(). on the state object. Override
the dispose function to do cleanup work. For example, override dispose to cancel timers or to
unsubscribe from platform services. Implementations of dispose typically end by calling

super .dispose.

For more information, see State.

https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html
https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html#createState
https://api.flutter.dev/flutter/widgets/State-class.html
https://api.flutter.dev/flutter/widgets/Widget-class.html
https://api.flutter.dev/flutter/widgets/State-class.html#didUpdateWidget
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/StatelessWidget/build.html
https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html#createState
https://api.flutter.dev/flutter/widgets/State-class.html#initState
https://api.flutter.dev/flutter/widgets/State-class.html
https://api.flutter.dev/flutter/widgets/State-class.html#dispose
https://api.flutter.dev/flutter/widgets/State-class.html

Keys

Use keys to control which widgets the framework matches up with other widgets when a widget
rebuilds. By default, the framework matches widgets in the current and previous build according to
their runtimeType and the order in which they appear. With keys, the framework requires that the two
widgets have the same key as well as the same runtimeType.

Keys are most useful in widgets that build many instances of the same type of widget. For example,
the ShoppingList widget, which builds just enough ShoppingListItem instances to fill its visible

region:

o Without keys, the first entry in the current build would always sync with the first entry in the
previous build, even if, semantically, the first entry in the list just scrolled off screen and is no
longer visible in the viewport.

e By assigning each entry in the list a “semantic” key, the infinite list can be more efficient because
the framework syncs entries with matching semantic keys and therefore similar (or identical)
visual appearances. Moreover, syncing the entries semantically means that state retained in
stateful child widgets remains attached to the same semantic entry rather than the entry in the
same numerical position in the viewport.

For more information, see the Key API.

Global Keys

Use global keys to uniquely identify child widgets. Global keys must be globally unique across the
entire widget hierarchy, unlike local keys which need only be unique among siblings. Because they are
globally unique, a global key can be used to retrieve the state associated with a widget.

For more information, see the GlobalKey API.

https://api.flutter.dev/flutter/widgets/Widget-class.html#runtimeType
https://api.flutter.dev/flutter/foundation/Key-class.html
https://api.flutter.dev/flutter/foundation/Key-class.html
https://api.flutter.dev/flutter/widgets/GlobalKey-class.html

